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Abstract 

 

In portfolio decision analysis, features comprise the objectives, alternatives, physics, and 

information that define a decision context.  By modeling features, decision analysts forecast the 

expected utilities of the alternatives.  A model is complete if it contains all the features.  A model 

is well-calibrated if it correctly predicts the probability distributions of each alternative’s utility, 

while ill-calibrated models, like those that suffer the optimizer’s curse, do not.  Friction identifies 

qualities of a situation that prevent decision analysts from creating complete, well-calibrated 

models.  When friction is significant, can maximizing expected utility be a suboptimal decision 

rule?  Is satisfying decision theory’s axioms a necessary or sufficient condition for good decision 

making?  Can rules that violate the axioms outperform rules that satisfy them?  A simulation 

study of how unbiased, imprecise forecasts of payoffs affect project selection finds that, for the 

example tested, the answers are yes, no, and yes, which suggests that further studies of friction 

may be worthwhile.  Discussions of friction bookend the study, starting the paper by defining 

friction and concluding by presenting three frameworks, each one from a different field of study, 

that provide mathematical tools for studying friction. 
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Friction and Decision Rules in Portfolio Decision Analysis 

When selecting projects for product development, portfolio decision analysis (PDA) 

recommends building a model to forecast the expected utility of potential portfolios and then 

selecting the portfolio that maximizes the forecasted expected utility.  The process should satisfy 

the decision theory’s axioms (Savage 1954; von Neumann and Morgenstern 1953).  Salo et al. 

(2011, p. 4) describe that, “[Decision] theory can be viewed as the foundation of PDA in that it 

postulates axioms that characterize rational decision making and enables the development of 

functional representations for modeling such decisions.” 

However, practitioners often apply heuristics approaches, such as scoring models, 

strategic buckets, and bubble charts (Cooper et al. 1998).  In the pharmaceutical industry, which 

leads other industries in applying PDA, Kloeber (2011, p. 284) describes the limited diffusion of 

PDA. “Even though methods were introduced and DA [decision analysis] processes were 

installed in several large pharmaceutical companies as early as 1985, many other companies 

either failed in their attempts to internalize decision analysis concepts, such as Decision Quality, 

or never attempted to introduce these concepts.”  Likewise, describing the field of project 

portfolio management for product development, Kavadias and Chao (2008, p. 136) state, 

“Several tools and theories have been developed by different constituencies, resulting in an 

interesting dichotomy: a collection of rigorous analytical efforts with minimal adoption and 

minimal practical impact and a variety of managerial frameworks grounded in individual case 

studies with widespread impact but little theoretical foundation.”  Why do practices differ from 

PDA’s theory and prescriptions? 

Section 1 starts to sketch a hypothesis by defining friction, and in the process, it raises 

questions about decision making.  When a model is ill-calibrated (as Section 1 defines), can 
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maximizing expected utility be a suboptimal decision rule?  Is satisfying decision theory’s 

axioms necessary or sufficient for good decisions?  Can rules that violate the axioms outperform 

rules that satisfy them?  For a germinal study of these questions, Section 2 introduces a simple 

PDA model to explore.  Section 3 presents three decision rules that, within the model, compete 

to maximize portfolio value.  Section 4 presents the competition’s results and explains the 

answers to the above questions, which for the example are yes, no, yes.  To enhance readability, 

the derivation of the model’s parameters, which requires a detailed analysis of empirical data, 

occurs in an appendix.  Section 5 briefly mentions mathematical models that may found 

theoretical analyses of friction.  

 

Section 1: Features and friction 

 To investigate the baffling bifurcation of PDA theory and practice, consider PDA’s 

cousin: modern portfolio theory (MPT).  The quadratic objective function in mean-variance 

optimization is sensitive to imprecise and inaccurate information, called estimation errors.  As 

Michaud (1998, p. 3) describes: 

“In practice, the most important limitations of MV [mean-variance] optimization are 

instability and ambiguity.  MV optimizers function as a chaotic investment decision 

system.  Small changes in input assumptions often imply large changes in the optimized 

portfolio.  Consequently, portfolio optimality is often not well defined.  The procedure 

overuses statistically estimated information and magnifies the impact of estimation 

errors.  It is not simply a matter of garbage in, garbage out, but, rather, a molehill of 

garbage in, a mountain of garbage out.  The result is that optimized portfolios are ‘error’ 

maximized and often have little, if any, reliable investment value.  Indeed, an equally 
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weighted portfolio may often be substantially closer to true MV optimality than an 

optimized portfolio.” 

Strategies for alleviating this problem are surprising.  One approach uses coarse data, 

filling the optimization’s correlation matrix, except for the cells on the diagonal, with the same 

value, the overall mean, calculated by averaging all the assets’ pairwise correlations.  Elton and 

Gruber (1995, p. 169) describe this practice’s success, “Tests have been performed using three 

different samples of stocks over a total of four different time periods.  In every case, the use of 

the overall mean model outperformed the single-index model, the multi-index model, and the 

historical correlation matrix.”  Another strategy replaces mean-variance optimization with linear 

programming (Michaud 1989, 1998), eliminating the model’s sensitivity but at the cost of using 

the wrong physics.  A third strategy adds constraints to MV optimization, especially constraints 

to prohibit short selling (Michaud 1989), thus contradicting an implication of optimization theory 

that expanding the solution set can never be harmful.  Finally, DeMiguel et al. (2009) tested the 

1 𝑛⁄  heuristic, a simple rule that allocates investment equally over assets, against 13 optimization 

models, with 3 models using Bayesian strategies.  Competing over seven datasets, none of the 

optimization models consistently outperformed the 1 𝑛⁄  heuristic in out-of-sample performance.  

How can coarse information, exploring fewer alternatives, and incorrectly modeling the physics 

improve performance?  How can the 1 𝑛⁄  heuristic outperform optimization while ignoring all 

information about return and risk? 

 Several definitions help us to propose answers.  Keeney (1992) describes a decision 

context as defined by two components.  One is a set of fundamental objectives that embody 

stakeholders’ preferences, naming the values the stakeholders wish to satisfy, while providing 

attributes and scales for measuring satisfaction, counted in units of utility.  The other is the full 
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set of alternatives with which decision-makers may realize the objectives.  This set includes all 

possible alternatives, even ones that are not explicitly stated or evaluated, such as all the 

solutions an algorithm skillfully avoids when solving the traveling salesman problem.  

Connecting the alternatives to the objectives are phenomena and physics, modeled with 

mathematics, variables, and parameters, through which alternatives satisfy the objectives.  

Information describes the state of the decision environment.  Features refer to the entire decision 

context: the identified objectives, the attributes and scales that measure utility, and the 

alternatives, physics, and information. 

A model is complete if it includes all the features of a decision context.  Over time, the 

PDA literature has studied more features, facilitating a march towards complete models.  

Heidenberger and Stummer (1999), Kavadias and Chao (2008), and Salo et al. (2011) summarize 

this literature.  A model is well-calibrated if it correctly predicts the utility (deterministic 

situation) or probability distribution of utility (stochastic situation) of every alternative.  A model 

that is not well-calibrated is ill-calibrated. 

We define friction as issues that make a model incomplete or ill-calibrated, such as the 

difficulties of identifying and modeling objectives, alternatives, and physics and of interpreting 

information.  Several studies detail these difficulties (Berkeley and Humphreys 1982; Brown 

1994; Clemen 2008; French 1995; Frisch and Clemen 1994).  Additionally, friction includes the 

biases, modeling errors, and decision errors that arise from cognitive heuristics (Einhorn and 

Hograth 1981; Slovic et al. 1981) and from the bounded rationality of individuals (Gigerenzer 

2008; Simon 1976) and organizations (Cyert and March 1963; Jones 1999).  Even for 

unboundedly rational decision-makers, information can cause friction, as modern portfolio 

theory illustrates, showing that noisy data propagating through nonlinear equations can make 
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models ill-calibrated.  This definition may seem overly broad, containing any disturbance that 

might adversely affect modeling, but the definition, purposefully, is as broads as the situations 

that decision analysts face. 

Friction is important because it can cause a decision-maker to select a suboptimal 

alternative, which is an alternative that has less expected utility than the optimal alternative.  

Mindful of these costly errors, consider decision theory’s prescription to maximize expected 

utility, as forecasted by a model.  If a model is ill-calibrated, maximizing the forecast of expected 

utility, although appearing like two-steps forward, could be a step or two backward.  

Recognizing this problem and anticipating the questions that closed this paper’s introduction, 

Frisch and Clemen (1994, p. 48) wrote, “If people conform to utility theory, their decisions are 

internally consistent.  It is not clear, however, that internal consistency (i.e., consistency with the 

axioms of utility theory) is either a necessary or a sufficient criterion for good decision making.” 

The term friction parallels its use in transaction cost economics (Williamson 1989), 

which studies how decision-makers design governance structures, such as contracts, to minimize 

the risks and costs created by market imperfections, called friction.  Causes of friction include 

bounded rationality and indiscernible contingencies, which limit the effectiveness of contracts 

because contracts cannot cover all contingencies. 

Two qualities of models can increase the impact of friction: (1) the physics that relate 

alternatives to objectives, such as the nonlinearities in MPT’s mean-variance optimization, and 

(2) the features added to a model.  Focusing on the second quality, some features mitigate 

friction, like decomposition, which improves judgments and diminishes the remaining error via 

weighted sums (Ravinder et al. 1988).  Other features may magnify errors, such as project 
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interactions in PDA models, which can cause errors in one project’s evaluation to affect 

decisions about other projects. 

Following the economist’s rule, we might add a feature to a model if the benefit it 

produces exceeds its costs.  If we consider only modeling costs, such as the cost of gathering 

information, we will create a sophisticated, feature-rich model.  This approach implicitly 

assumes that models are well-calibrated.  In contrast, if we consider the cost of decision errors 

caused by friction, our models will omit alternatives, objectives, physics, and information that, 

when included, cause more harm than good, and these omissions will make models simpler.  

Generally, past some point of diminishing returns, adding features creates opportunities for 

modeling errors, heightens the need to simplify a model’s mathematics, and requires additional 

information, thus exposing a model to additional bias and noise while providing pathways that 

propagate errors through the model to the objectives. 

The above definitions present a three-step sequence that affects a decision: (1) friction 

causes, (2) incomplete and possibly ill-calibrated models, which can cause (3) costly decision 

errors.  A large literature addresses the first step by helping practitioners to build models that 

minimize friction (Keeney 1992; Montibeller and von Winterfeldt 2015; Spetzler et al. 2016).  

Some research explores the transition from step 1 to step 2, studying how errors propagate 

through a model to produce ill-calibrated results (Clemen and Winkler 1985; Lindley 1986; 

Ravinder et al. 1988).  Research exploring the transition from step 2 to step 3, revealing how 

incomplete and ill-calibrated models affect outcomes, includes studies of the value of 

information (Keisler 2004; Zan and Bickel 2013), the optimizer’s curse (Sections 2 and 3 present 

a definition and citations), and robust PDA (Baker et al. 2020; Hassanzadeh et al. 2014; Kettunen 

and Salo 2017; Liesiö et al. 2007, 2008; Liesiö and Salo 2012; Thomas and Liesiö 2016; 
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Vilkkumaa et al. 2014, 2015).  To this sequence, we might add a fourth step, a feedback loop 

from a decision’s results to step 1’s friction.  If a decision produces unsatisfactory results, 

studying the results may identify the cause, either bad luck, as emphasized by decision analysis’s 

distinction between good decisions and results, or friction that made a model imperfect and 

caused a decision error.  By studying results, we might assign probabilities to these two causes. 

Recall, the questions that concluded the introduction.  Given an ill-calibrated model, can 

maximizing expected utility be a suboptimal decision rule?  Is satisfying decision theory’s 

axioms necessary or sufficient for good decisions?  Can rules that violate the axioms outperform 

rules that satisfy them?  We now explore these questions with a simple example, seeking to learn 

whether answers of yes, no, and yes are possible. 

 

Section 2: Modeling payoffs, forecasts, and probabilities of technical success 

To explore the questions and study PDA, we generate a set of projects and randomly 

assign each project a payoff, an unbiased but imprecise forecast of the payoff, and a well-

calibrated probability of technical success.  Then three selection rules compete to create 

portfolios that maximize value.  Section 2 presents the models of payoffs, imperfect forecasts, 

and probabilities of technical success.  Section 3 presents the selection rules.  Section 4 presents 

the competition’s results.  An appendix derives the model’s parameters, thus placing these long, 

detailed explanations last. 
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Payoffs and forecasts 

Variables  

𝑋: The distribution of projects’ payoffs, measured as the NPV of the profits a project produces, if 
launched, discounted to the project’s launch date. 

𝑉: A normal random variable used to create a lognormal distribution of payoffs, 𝑋 = exp(𝑉). 

𝑌: A normal random variable that creates forecasting errors, 𝑌~𝑁(0, 𝜎𝑌
2). 

𝑍: A probability distribution of forecasts, as specified by a forecasting model.  The forecast, 𝑍, 
combines each payoff from 𝑋 with a random sample from 𝑌. 

Forecasting models 

𝑍 = 𝑋 + 𝑌: constant absolute error model (CAE). 

𝑍 = exp(𝑉 + 𝑌): lognormal error model (LN). 

𝑍 = 𝑋 + 𝑋𝑌: constant relative error model (CRE). 

Parameters 

𝛿: The skew of 𝑋. 

𝜀: The percentage of a forecast that is noise (equation 1). 

1 − 𝜀:  The percentage of forecast that is signal. 

Value of parameters used in the simulations 

𝑋: The distributions of payoffs are 𝑋 = exp(𝑉), with, 𝑉~𝑁(−0.049, 0.3142), 
𝑉~𝑁(−0.152, 0.5512), and 𝑉~𝑁(−0.361, 0.852).   

𝛿: 𝛿 ∈ {1, 2, 4.18}, produced by the above distributions of 𝑋.  Relevant references: Grabowski et 
al. (2002); Steedman et al. (2018). 

𝜀: For each distribution of 𝑋, the value of 𝜎𝑌 is set to produce 
 𝜀 ∈ {20%, 36%, 50%, 61%, 70%, 80%}.  Relevant references: Cha et al. (2013). 

Pharmaceutical scenario: 𝛿 = 2, 𝜀 > 66%. 

Table 1: The model of projects’ payoffs and forecasts (Section 2.1) and parameter values (Appendix) 
used in the simulations (Section 4). 
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Probabilities of technical success 

Technically sound projects survive development to achieve launch. 

Technically flawed projects fail in development. 

SDT model: The overlapping distributions of Figure 1 create a signal detection theory model and 
produce well-calibrated probabilities of technical success for any level of technical uncertainty 
(Macmillan and Creelman 2005).   

Variables 

𝜋𝐸: The fraction of evaluated projects that are technically sound, also called the base rate. 

𝑣: A project’s score. 

𝜑𝐹(𝑣)~𝑁(𝜇𝐹 , 𝜎𝐹
2): The probability distribution of the scores of flawed projects. 

𝜑𝑆(𝑣)~𝑁(𝜇𝑆, 𝜎𝑆
2): The probability distribution of the scores of sound projects. 

𝑝 = Pr(sound|𝑣):  The probability that a project is sound given its score (equation 2).  This 
probability is well-calibrated. 

𝐴𝑈𝐶: The area under the ROC curve (equations 3 and 4). The ROC curve plots the true-positive 
rate (vertical axis) against the false-positive rate (horizontal axis), or equivalently, it plots 
sensitivity against one minus specificity (Fawcett 2006; Gönen 2007; Macmillan and 
Creelman 2005). 

𝜋𝐷: The fraction of development projects that are technically sound. 

𝑘𝐷: Development cost, set to a percentile of 𝑋, 𝑃𝑎 = 𝐹𝑋
−1(𝑎). 

Parameter values 

𝜑𝐹(𝑣):  𝑁(0, 12). 

𝜑𝑆(𝑣):  𝑁(1.19, 12) and 𝑁(1.81, 12). 

𝐴𝑈𝐶: The values of 𝜑𝐹(𝑣) and 𝜑𝑆(𝑣) are selected to produce 𝐴𝑈𝐶 ∈ {0.800, 0.900}.  Relevant 
references: Chen et al. (2015); Lindborg et al. (2014); Lo et al. (2019). 

𝜋𝐸:  {35%, 53%}.  Relevant references: Senn (2007); Lo et al. (2019); Arrowsmith (2011); Hay et 
al. (2014). 

𝑘𝐷: {𝑃5, 𝑃25}.  Relevant references: Grabowski (2002). 

Table 2: The model of projects’ probabilities of technical success (Section 2.2) and parameter values 
(Appendix) used in the simulations (Section 4). 
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Section 2.1: Modeling payoffs and forecasts 

Each project that survives development achieves launch and produces a profit that is an 

independent draw of a random variable, 𝑋.  Managers forecast this value but suffer imprecision 

produced by a normal random variable, 𝑌~𝑁(0, 𝜎𝑌
2), that is independent of 𝑋.  Together, 𝑋 and 

𝑌 produce forecasts, 𝑍, and we seek a function that combines them to produce (1) imprecise but 

unbiased forecasts that (2) scale with a market’s size, so that common errors, such as over- or 

underestimating market share or price, produce larger forecasting errors for larger markets.  

(Table 1 summarizes the model of payoffs and forecasts.) 

Two possible models come from studies of the optimizer’s curse, a phenomenon that 

describes how selection routinely creates overvalued, suboptimal portfolios (described in Section 

3).  Several studies of the curse use a constant absolute error model (CAE), 𝑍 = 𝑋 + 𝑌, which 

yields unbiased errors, but the “average” size of the errors, 𝜎𝑌, is the same for all values of 𝑋 

(Harrison and March 1984; Smith and Winkler 2006; Chen and Dyer 2009; Jorgensen 2013; 

Kettunen and Salo 2017; Vilkkumaa et al. 2014).  Studies of the optimizer’s curse in the oil and 

gas industry (Schuyler and Nieman 2008; Chen and Dyer 2009), and of the value of information 

in project selection (Keisler 2004), present lognormal error models (LN), 𝑍 = exp(𝑉 + 𝑌), 

where 𝑋 = exp(𝑉) and 𝑌 is independent of 𝑉.  The errors in this model scale with 𝑋, but they 

are optimistically biased.  From the formula for the mean of a lognormal distribution, and 

recalling that the mean of 𝑌 is zero, 𝐸[𝑍] = 𝐸[exp(𝑉)]𝐸[exp(𝑌)] = 𝐸[exp(𝑉)] exp(𝜎𝑌
2 2⁄ ).  

Forecasts create an optimistic bias, 𝐸[𝑍] > 𝐸[𝑋], because exp(𝜎𝑌
2 2⁄ ) > 1 for 𝜎𝑌 > 0. 

The CAE and LN models each possess one of the qualities we seek, but neither possesses 

both qualities together.  Therefore, this study uses a constant relative error model (CRE), 𝑍 =

𝑋 + 𝑋𝑌 = 𝑋(1 + 𝑌) = 𝑋𝑌′, where 𝑌′~𝑁(1, 𝜎𝑌
2).  The CRE model produces unbiased forecasts 
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because 𝐸[𝑍] = 𝐸[𝑋𝑌′] = 𝐸[𝑋]𝐸[𝑌′] = 𝐸[𝑋], and its forecasting errors grow with 𝑋 because its 

error is 𝑋𝑌.  Relative to 𝑋, the size of the “average” error is a constant, 𝜎𝑌, since 𝑋𝑌 𝑋⁄ = 𝑌.  To 

model a skewed distribution of profits, which is common in many industries, let 𝑋 be a 

lognormal distribution.  Without sacrificing generality, let 𝐸[𝑋] = 1, so we can characterize the 

lognormal distribution with only one additional parameter, its skew, 𝛿. 

The error parameter, 𝜎𝑌, impacts the CAE, CRE, and LN models differently, so we will 

use a metric, recommended by Keisler (2004), that maintains the same meaning in all situations.  

This metric is the percentage of variation in the forecast that comes from forecasting error, or in 

colloquial terms, the noise in the forecast.  For a CRE model with lognormal 𝑋 scaled so 𝐸[𝑋] =

1, this percentage is: 

 𝜀 =
𝑉𝑎𝑟(𝑋𝑌)

𝑉𝑎𝑟(𝑋 + 𝑋𝑌)
=

[𝑉𝑎𝑟(𝑋) + 1]𝜎𝑌
2

[𝑉𝑎𝑟(𝑋) + 1]𝜎𝑌
2 + 𝑉𝑎𝑟(𝑋)

=
𝜎𝑌

2exp(𝜎𝑋
2)

(𝜎𝑌
2 + 1)exp(𝜎𝑋

2) − 1
 (1) 

The complement, 1 − 𝜀, is the percentage of the forecasts that is signal. 

 

Section 2.2: Modeling projects’ probabilities of technical success 

Having introduced the model of payoffs and forecasts, we address projects’ probabilities 

of technical success.  (Table 2 summarizes this model.)  In the pharmaceutical industry, 

statisticians design clinical trials to produce desired false-positive and false-negative rates.  

Combining these rates with a prior probability distribution, via Bayes’ law, estimates a trial’s 

technical probability of success (Beckman et al. 2011; Chaung-Stein et al. 2011; Chen and 

Beckman 2007, 2009a, 2009b; Lendrem and Lendrem 2013; Lindborg et al. 2014; Patel and 

Ankolekar 2007, 2015; Summers 2010).  By generalizing this model, we can create well-

calibrated probabilities of technical success for projects.  Assume projects come in two types.  

Technically sound projects will succeed in development, but technically flawed ones will fail.  If 
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decision-makers evaluate technical risk with additive models, such as scoring models (Cooper et 

al. 1998) or simple linear models (Dawes 1979), the central limit theorem implies normally 

distributed scores.  Figure 1 illustrates this result, which is a signal detection theory model 

(Macmillan and Creelman 2005).  Technically flawed projects receive scores, 𝑣, from the 

distribution on the left, 𝜑𝐹(𝑣)~𝑁(𝜇𝐹 , 𝜎𝐹
2), whereas technically sound projects receive scores 

from the distribution on the right, 𝜑𝑆(𝑣)~𝑁(𝜇𝑆, 𝜎𝑆
2).  Let 𝜋𝐸, sometimes called a base rate, be 

the percentage of the evaluated projects that are technically sound.  Bayes’ law yields the 

probability of a project being sound as a function of its score: 

 𝑝 = Pr(sound|𝑣) =
𝜋𝐸𝜑𝑆(𝑣)

𝜋𝐸𝜑𝑆(𝑣) + (1 − 𝜋𝐸)𝜑𝐹(𝑣)
 (2) 

 

 

 

 

 

 

Figure 1: A signal detection theory model of scores that evaluate technical risk. 

 

The overlap of the curves represents uncertainty, and one metric that measures it is called 

the area under the ROC curve, for which 𝐴𝑈𝐶 is the standard notation (Fawcett 2006; Gönen 

2007).  The 𝐴𝑈𝐶 is the probability of assigning a higher score to a randomly selected sound 
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project than to a randomly selected flawed project.  Technical uncertainty is absent when the two 

distributions are entirely separate (no overlap), and then 𝐴𝑈𝐶 = 100%.  Pervasive uncertainty, 

producing the worst evaluations, with 𝐴𝑈𝐶 = 50%, occurs when the two distributions overlap 

entirely, such as when they have equal means and standard deviations.  Lower values of 𝐴𝑈𝐶 

identify greater technical uncertainty, whereas higher values indicate greater technical resolution.  

The 𝐴𝑈𝐶, determined by the overlap of the curves, is: 

 𝐴𝑈𝐶 = Φ (
𝑢

√1 + 𝑟2
) (3) 

where 𝑢 = (𝜇𝑆 − 𝜇𝐹) 𝜎𝑆⁄  and 𝑟 = 𝜎𝐹 𝜎𝑆⁄ .  If a decision-maker sets a cutoff value, 𝑣𝑐, and 

advances projects with 𝑣 > 𝑣𝑐, the resulting false-positive and false-negative rates give the 𝐴𝑈𝐶 

as a function of the error rates: 

 𝐴𝑈𝐶 = Φ (
𝑧(1 − 𝛽) − 𝑧(𝛼 2⁄ )

√2
) (4) 

where 𝛽 = Φ𝑆(𝑣𝑐) is the false-negative rate, 𝛼 2⁄ = 1 − Φ𝐹(𝑣𝑐) is the false-positive rate, and 

the function 𝑧(. ) gives the 𝑧-score of the error rates. 

 The final parameter in the model of development is cost.  For simplicity, all projects 

advanced to development incur the same development cost, 𝑘𝐷, and to ensure consistency over 

the scenarios (see Appendix), the development cost is specified as a percentile of 𝑋, 𝑘𝐷 = 𝑃𝑎 =

𝐹𝑋
−1(𝑎). 
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Section 3: Three project selection methods 

The simulation creates numerous projects and assigns a random payoff, forecast, and 

probability of technical success to each one.  Three selection rules then compete by constructing 

portfolios to maximize value.  This section introduces the project selection rules (summarized in 

Table 3), but it begins by considering how imperfect forecasts harm selection.  Forecasting errors 

can cause three problems (1) overestimating portfolio value (the optimizer’s curse), (2) selecting 

suboptimal portfolios, and (3) reducing portfolio value (Vilkkumaa et al. 2014).  The optimizer’s 

curse exemplifies these problems.  Analogous to the winners curse in economics (Thaler 1988), 

project selection methods, seeking to maximize value, select some overvalued projects and reject 

some undervalued ones.  On average, selection creates overvalued portfolios.  Formally, for 𝑛 

projects with payoffs 𝑥1, … , 𝑥𝑛, let 𝑧1, … , 𝑧𝑛 be forecasts that are unbiased, meaning 

𝐸[𝑧𝑖|𝑥1, … , 𝑥𝑛] = 𝑥𝑖.  Let 𝑖∗ denote the alternative with the maximal estimated value 𝑧𝑖∗ =

max{𝑧𝑖, … , 𝑧𝑛}.  Smith and Winkler (2006) prove 𝐸[𝑧𝑖∗ − 𝑥𝑖∗] ≥ 0, and if there is a positive 

probability of selecting a suboptimal alternative, 𝐸[𝑧𝑖∗ − 𝑥𝑖∗] > 0.  Vilkkumaa et al. (2014) 

extend this result to portfolios comprising a proper subset of the 𝑛 projects, and for the special 

case of selecting projects via a cutoff value, 𝑧𝑐, for both the CAE model with normal 𝑋 and the 

LN model, Chen and Dyer (2009) prove 𝜎𝑌 > 0 implies 𝐸[𝑍|𝑍 > 𝑧𝑐] > 𝐸[𝑋|𝑍 > 𝑧𝑐]. 
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Selection via expected values 

𝐸𝑉: For each project, forecast its expected value, 𝑝𝑧.  Set a cutoff value.  Select projects 
with forecasts exceeding the cutoff value. 

𝑡: The percentage of evaluated projects that exceed the cutoff value and thus advance to 
development (throughput). 

𝑔(𝑡): The value created by 𝐸𝑉 as a function of throughput. 

𝑡𝐸𝑉
∗ : The optimal throughput for 𝐸𝑉. 

Selection via Bayesian adjusted expected value 

𝐵𝐸: Assume decision-makers know the distribution of projects’ payoffs, 𝑋, the relative size 
of forecasting errors, 𝜎𝑌, and the error model (CRE model in this experiment).  Via 
Bayes’ law, calculate the expected payoff given the forecast, 𝐸[𝑋|𝑍 = 𝑧], and forecast 
expected value as 𝐸[𝑋|𝑍 = 𝑧]𝑝.  Set a cutoff value.  Select projects with forecasts 
exceeding the cutoff value. 

𝑏(𝑡): The value created by 𝐵𝐸 as a function of throughput. 

𝑡𝐵𝐸
∗ : The optimal throughput for 𝐵𝐸. 

Selection via the two-screen method 

𝑇𝑆: Set cutoff values for payoffs, 𝑧𝑐, and for project scores, 𝑣𝑐.  Advance projects with 
forecasts and probabilities that exceed their respective cutoff values. 

𝑡𝑀, 𝑡𝑇: The percentage of projects that survive the market screen and the percentage that 
survive the technical screen. 

ℎ(𝑡𝑀, 𝑡𝑇): The value created by 𝑇𝑆 as a function of the market and technical throughput. 

𝑡𝑀𝑡𝑇: The throughput produced by 𝑇𝑆. 

𝑡𝑀
∗ 𝑡𝑇

∗ : The optimal throughput for 𝑇𝑆. 

Table 3: The selection rules (Section 3) used in the simulations (Section 4). 
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Section 3.1: A calculation of expected value 

For simplicity, assume decision-makers seek to maximize expected value, rather than 

expected utility.  With estimates of 𝑝 and 𝑧, a decision-maker might calculate a projects’ 

expected value as 𝑝𝑧.  In the present model, where all projects have the same development cost, 

the decision-maker can maximize value by setting a cutoff value and advancing only those 

projects with expected values that exceed the cutoff.  Identify this method as EV.  To measure its 

performance, let 𝑡 be the percentage of projects that advance (throughput), and let 𝑔(𝑡) be a 

function that gives the ex ante value of a project being evaluated for development.  For a 

sufficiently high cutoff value, no projects advance, so 𝑔(𝑡 = 0) = 0.  For a sufficiently low 

cutoff value, all projects advance, so 𝑔(𝑡 = 100%) = 𝜋𝐸𝐸[𝑋] − 𝑘𝐷.  Some level of throughput, 

𝑡𝐸𝑉
∗ , maximizes projects’ ex ante value at 𝑔(𝑡𝐸𝑉

∗ ).   

The 𝑝𝑧 metric is compensatory because it balances forecasted profit with probabilities of 

technical success, such as advancing projects that have low values of 𝑝 but high values of 𝑧.  It is 

rational because the metric produces preference orderings of projects and portfolios that satisfy 

decision theory’s axioms.  However, despite being produced by well-calibrated probabilities and 

unbiased forecasts, EV produces an ill-calibrated PDA model.  The problem is the optimizer’s 

curse. 

 Consider a drug that is forecasted to be a blockbuster.  Likely, the high value of 𝑧 arises 

in one of two ways: (1) the compound is indeed a blockbuster and the forecasting error is small 

or (2) the compound is not a blockbuster and the forecasting error is large.  Because of the 

skewed distribution of profits, the second case is much more likely, so forecasts of blockbusters 

are, on average, optimistic.  Derived for the mathematically tractable LN model (Chen and Dyer 
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2009), the formula for 𝐸[𝑋|𝑍 = 𝑧] shows these biases, revealing how unbiased, imprecise 

forecasting errors produce a striking pattern of biases when conditioned on 𝑍: 

 𝐸[𝑋|𝑍 = 𝑧] = exp[(1 − 𝜀) ln(𝑧) + 𝜀𝜇𝑉 + 𝜀𝜎𝑉
2 2⁄ ] (5) 

For 𝜀 > 0, setting 𝐸[𝑋|𝑍 = 𝑧] = 𝑧 reveals that the expectation equals the estimate only when the 

estimate equals the population mean, 𝑧 = 𝐸[𝑋].  On average, forecasts of 𝑧 > 𝐸[𝑋] are 

optimistically biased.  For all three models (LN, CAE, and CRE) there is a value, 𝑧𝑚, such that if 

𝑧 > 𝑧𝑚, then 𝑧 > 𝐸[𝑋|𝑍 = 𝑧]. 

 Figure 2A illustrates the biases by plotting (𝑧 𝐸[𝑋|𝑍 = 𝑧]⁄ ) − 1 for the CRE model with 

𝛿 = 2 for 𝜀 = 70% (representing pharmaceuticals) and 𝜀 = 36%.  In pharmaceuticals, the top 

decile of products, which is a good definition of a blockbuster, has profits of five times the 

industry average (Grabowski et al. 2002).  These forecasts are highly biased: 𝐸[𝑋|𝑧 = 5𝐸[𝑋]] ≈

50%𝑧. 

For the biases that Figure 2A displays, any nonrandom selection method produces 

optimistic estimates of portfolio value.  Figure 2B illustrates this optimism in simulations of 

selection via EV for a scenario that, by some measures, matches pharmaceuticals (see 

Appendix).  Industry-wide, 32.4% of phase 2 compounds advance to phase 3 (Hay et al. 2014), 

so, on average, the scenario suggests that project selection based on 𝑝𝑧 overvalues phase 3 

portfolios by about 40%.  Notice that throughput of 100% eliminates the bias, as optimistic and 

pessimistic forecasts cancel each other.  When there is no selection, there is no selection bias. 
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Figures 2A (left) and 2B (right): Both charts come from a CRE model where 𝑋 has a skew of 

𝛿 =  2. Figure 2A shows the average bias in a project’s forecast as a function of the forecast, 𝑧.  

Figure 2B shows the average bias in forecasts of portfolio value when selecting projects via EV, 

presented as a function of throughput. 

 

 

Section 3.2: A two-screen selection method 

 If the forecasting imprecision causes sufficiently large estimation errors, selection with 

EV makes decision errors and creates suboptimal portfolios.  To illustrate these errors, focus on 

profit forecasts.  A successful development project must pay for its development plus a portion 

of the development cost from projects that fail, so we define a profitable project as having a 

payoff 𝑥 > 𝑘𝐷 𝜋𝐷⁄ , a false-negative as canceling a profitable project, and a false-positive as 

advancing an unprofitable project (𝑥 ≤ 𝑘𝐷 𝜋𝐷⁄ ).  For a high development cost, large skew and 

large forecasting error, Figure 3A shows that project selection errors comprise a minimum of 

30% of the project selection decisions. 
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Figures 3A (left) and Figure 3B (right): Using the LN model, which produces nicely shaped 

curves, these figures show the selection errors produced when picking projects by their 

forecasted payoffs, using a cutoff value, 𝑧𝑐.  The percentage of projects that are selected 

(throughput) is 𝑡𝑀 = 1 − 𝐹𝑍(𝑧𝑐).  The parameters for this LN model were selected to match 

situations found in the pharmaceutical industry (see Appendix), except for the example’s large 

skew: 𝛿 = 4.18, 𝜀 = 66% and 𝑘𝐷 𝜋𝐷⁄ = 𝑃43.6. 

 

These costly errors arise because EV trades well-calibrated probabilities of technical 

success for ethereal payoffs.  Rather than corrupting the good technical data with the noisy 

market data, a selection method that uses 𝑝 and 𝑧 separately may produce fewer errors and thus 

create more value than selection via 𝑝𝑧.  Focusing on extremes: perfectly forecasted payoffs 

make expected values the best selection metric, but forecasts with infinite imprecision make 

expected values useless so that selecting based only on the probability of technical success 

becomes superior.  A transition must occur.  If it occurs for realistic levels of forecasting error, 

the two-screen heuristic is a valuable decision rule.   
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Decision-makers apply a technical screen by assigning a score or a probability of 

technical success to each project.  (Either metric works because equation 2 establishes a one-to-

one relationship between scores and probabilities with both metrics producing the same ordering 

of projects.)  Our analysis proceeds by using the projects’ scores.  Decision-makers set a cutoff 

value, 𝑠𝑐, and advance projects with scores 𝑠 > 𝑠𝑐.  Figure 2 illustrates the fraction of sound 

projects and of flawed projects that advance.  Before the evaluation (ex ante), the probability of a 

project surviving the screen, the technical throughput, is: 

 𝑡𝑇 = 𝜋𝐸[1 − Φ𝑆(𝑣𝑐)] + (1 − 𝜋𝐸)[1 − Φ𝐹(𝑣𝑐)] (6) 

The fraction of advancing projects that are technically sound, which is the success rate in 

development is: 

 𝜋𝐷 =
𝜋𝐸[1 − Φ𝑆(𝑣𝑐)]

𝑡𝑇
 (7) 

The decision-maker performs a second selection, a market screen, by setting a cutoff 

value, 𝑧𝑐, and advancing projects with 𝑧 > 𝑧𝑐.  The ex ante probability of a project surviving this 

screen, the market throughput, is 𝑡𝑀 = 1 − 𝐹𝑍(𝑧𝑐). 

 Assuming the technical and market characteristics and evaluations are independent of 

each other, a project’s ex ante value when selected via the two-screen method is ℎ(𝑡𝑀, 𝑡𝑇) =

𝑡𝑀𝑡𝑇(𝜋𝐷𝐸[𝑋|𝑍 > 𝑧𝑐] − 𝑘𝐷).  The throughput that advances proposals to development is 𝑡𝑀𝑡𝑇.  

The optimal cutoff values produce a value of ℎ(𝑡𝑀
∗ , 𝑡𝑇

∗ ).  This heuristic is noncompensatory and 

violates decision theory’s completeness axiom because, being unable to compare differences in 

forecasted payoffs to differences in the probabilities of technical success, it cannot produce a 

complete preference ordering.  For conciseness, TS identifies this method. 
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Section 3.3: Bayesian estimates 

The TS method manages uncertainty, and the EV method ignores it.  The third selection 

method in this experiment resolves uncertainty.  The forecast 𝑧 provides information about an 

object (a case) that is a sample of a class, 𝑋.  Combining case data with class data interweaves 

information from two perspectives to resolve uncertainty (Åstebro and Koehler 2007; Kahneman 

and Lavollo 1993; Kahneman and Tversky 1982; Lovallo and Kahneman 2003), and calculating 

𝐸[𝑋|𝑍 = 𝑧], via Bayes’ law, accomplishes this task.  The result reduces forecasting error, 

increases portfolio value, and, if done with knowledge of the error model, including the 

distributions of 𝑋 and 𝑌, eliminates the optimizer’s curse as well (Vilkkumaa et al. 2014).  To 

test this approach, called BE, assume managers calculate 𝐸[𝑋|𝑍 = 𝑧] for each project, estimate 

each project’s expected value as 𝐸[𝑋|𝑍 = 𝑧]𝑝, set a cutoff value, and select projects with 

expected values above the cutoff.  Let 𝑏(𝑡) give the ex ante expected value of a project being 

evaluated for development when managers use BE.  The optimum throughput, 𝑡𝐵𝐸
∗ , maximizes 

value at 𝑏(𝑡𝐵𝐸
∗ ).  (Appendix A6 derives 𝐸[𝑋|𝑍 = 𝑧] for the CRE model.) 

 

 Section 4: Simulation experiments 

To test BE, EV, and TS, the simulations use realistic high and low values of 𝛿, 𝜀, 𝜋𝐸, 

𝐴𝑈𝐶, and 𝑘𝐷, gleaned from empirical data for a critical decision in drug development: selecting 

phase 2 compounds to advance to phase 3 clinical trials (see Appendix).  The parameter values 

are 𝛿 ∈ {1, 2, 4.18}, 𝐴𝑈𝐶 ∈ {80%, 90%}, 𝜋𝐸 ∈ {35%, 53%} and 𝑘𝐷 ∈ {𝑃5, 𝑃25}.  The parameter 

values for forecasting error span a full range, from exceptional to terrible forecasts,  𝜀 ∈

{20%, 36%, 50%, 61%, 70%, 80%}.  Importantly, derived from Cha et al. (2013), a reasonable 
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forecasting error when evaluating compounds for phase 3 trials is 𝜀 > 66%, suggesting a 

surprising low signal of 1 − 𝜀 < 34% (see Appendix). 

The cross product of the parameters produces 144 scenarios.  For each scenario, the 

experiment performed at least three simulations, each one composed of 5,000 projects randomly 

created with the CRE model.  Specifically, each project received a profit from a random draw of 

a lognormal 𝑋, a forecasting error from a random draw of 𝑌, a type, flawed or sound, selected by 

a Bernoulli variable with probability 𝜋𝐸, and a score, produced from a random draw of 𝑣 = 𝜑𝐹
−1 

or 𝑣 = 𝜑𝑆
−1, depending on whether a project was flawed or sound. 

After the simulation creates the projects, each selection rule (𝐸𝑉, 𝐵𝐸, and 𝑇𝑆) selects 

projects.  Of the selected projects, the technically flawed ones fail in development, but the 

technically sound ones succeed, launch, and produce their payoffs.  Then the simulation 

calculates the value in each portfolio, the ex ante value of a project being evaluated, and the ROI 

of development.  The simulation calculates these results for all cutoff values (for upcoming 

Figures 4A and 4B) and for each rule’s optimal cutoff value (for Figure 5).  The relationships 

presented below are robust, checked by repeating all the simulations for the LN model and the 

CAE and CRE models with exponential distributions of 𝑋. 

 

Section 4.1: Exploring the three questions 

Recall the questions that concluded Section 1.  If a model is ill-calibrated: Can 

maximizing expected utility be suboptimal?  Is satisfying decision theory’s axioms necessary or 

sufficient for good decisions?  Can rules that violate the axioms outperform rules that satisfy 

them?  The competition between EV and TS offers a modicum of insight.  Figures 4A and 4B 

present the results from a simulation with 𝛿 = 1, 𝜀 = 61%, 𝜋𝐸 = 53%, 𝐴𝑈𝐶 = 0.9, 𝑘𝐷 = 𝑃5, so 
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the development costs, skew of the payoffs, and forecasting errors are smaller than in the 

pharmaceutical industry, as they are in most industries.  In Figure 4A, the horizontal axis is 

98% ≥ 𝑡𝑀 ≥ 2% and the vertical axis is 98% ≥ 𝑡𝑇 ≥ 2% with (98%, 98%) in the top left 

corner and (2%, 2%) in the bottom right corner.  Each point in the chart represents a possible 

selection via TS with a throughput of 𝑡𝑀𝑡𝑇.  The chart compares the performance of TS and EV 

via the difference ℎ(𝑡𝑀, 𝑡𝑇) − 𝑔(𝑡𝑀𝑡𝑇).  To make a measurement that adjusts to each simulation, 

let 𝑁 = 5%𝑔(𝑡𝐸𝑉
∗ ).  The solid gray area shows where EV significantly outperforms TS: 

ℎ(𝑡𝑀, 𝑡𝑇) − 𝑔(𝑡𝑀𝑡𝑇) ≤ −𝑁.  The white area indicates that EV is only slightly superior: 0 >

ℎ(𝑡𝑀, 𝑡𝑇) − 𝑔(𝑡𝑀𝑡𝑇) > −𝑁.  The horizontal stripes show where TS is slightly superior: 𝑁 >

ℎ(𝑡𝑀, 𝑡𝑇) − 𝑔(𝑡𝑀𝑡𝑇) > 0.  The vertical and horizontal stripes together show where TS is 

significantly superior: ℎ(𝑡𝑀, 𝑡𝑇) − 𝑔(𝑡𝑀𝑡𝑇) > 𝑁. 

Gray areas fill most of Figure 4A, with an exception, which exists for nearly all the 

scenarios tested, of a white swoosh that extends from the upper-left area to the bottom-right 

corner.  For low levels of 𝜀, the swoosh is solid white, signaling that EV outperforms TS 

throughout this area, and thus everywhere.  As 𝜀 increases, TS becomes slightly superior to EV 

on the extreme left side of the swoosh (horizontal lines, Figure 4A).  Further increases of 𝜀 cause 

(1) the area where TS beats EV to grow rightward across the swoosh and (2) produce an area, at 

the extreme left of the swoosh, where TS markedly beats EV (horizontal and vertical lines 

together).  Further increases in 𝜀, to high values, create a continuous zone, from extreme left to 

the extreme right of the swoosh, throughout which TS beats EV. 

 Focusing on the white swoosh, we can identify the situations in which TS outperforms 

EV.  The optimal cutoffs for TS, (𝑡𝑀
∗ , 𝑡𝑇

∗ ), are always within the white swoosh.  When 𝑘𝐷 is 

small, projects are highly profitable, so the optimal throughput is high.  In these cases, (𝑡𝑀
∗ , 𝑡𝑇

∗ ) is 
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on the extreme left, with 𝑡𝑀
∗ = 100% (black dot, Figure 4A).  As 𝑘𝐷 increases, (𝑡𝑀

∗ , 𝑡𝑇
∗ ) travels 

across the white swoosh towards the bottom-right corner.  Whenever (𝑡𝑀
∗ , 𝑡𝑇

∗ ) is within a stripped 

area, ℎ(𝑡𝑀
∗ , 𝑡𝑇

∗ ) > 𝑔(𝑡𝑀
∗ 𝑡𝑇

∗ ), and except for the borderline cases, where the methods have nearly 

the same performance, ℎ(𝑡𝑀
∗ , 𝑡𝑇

∗ ) > 𝑔(𝑡𝐸𝑉
∗ ) as well.  For example, in Figure 7A, ℎ(𝑡𝑀, 𝑡𝑇) >

𝑔(𝑡𝐸𝑉
∗ ) for 𝑡𝑀 ≥ 90% and 38% ≤ 𝑡𝑇 ≤ 58%. 

 Figures 4B compares the three selection methods by presenting the ROIs produced by BE 

and EV as a function of throughput, with ROIs calculated like the one for EV: [𝑔(𝑡) − 𝑘𝐷] 𝑘𝐷⁄ .  

An X marks the maximum ROI produced by TS, revealing that TS’s maximum ROI is closer to 

𝑏(𝑡𝐵𝐸
∗ ) than to 𝑔(𝑡𝐸𝑉

∗ ).  The horizontal dotted line shows the range of throughput for which 

ℎ(𝑡𝑀, 𝑡𝑇) > 𝑔(𝑡𝐸𝑉
∗ ), for some combination of (𝑡𝑀, 𝑡𝑇), which in this simulation was 34% to 

58%.  In fact, managers can outperform EV by ignoring profit forecasts (setting 𝑡𝑀 ≥ 100%) 

and choosing a cutoff value for the probability of technical success within the interval 43% ≤

𝑝 ≤ 75%.  This is a broad range, but if capacity constraints require less throughput, TS 

outperforms EV when capacity constraints place (𝑡𝑀, 𝑡𝑇) within the area were TS is superior 

(Figure 4A, horizontal lines).   
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Figures 4A (left) and 4B (right):  For the scenario with 𝛿 = 1, 𝜋𝐸 = 53%, 𝐴𝑈𝐶 = 0.9, 𝑘𝐷 = 𝑃5, 

and 𝜀 = 61%.  Figure 4A compares TS with EV.  The gray and white areas show where 

ℎ(𝑡𝑀, 𝑡𝑇) < 𝑔(𝑡𝑀𝑡𝑇), while the stripped areas show where ℎ(𝑡𝑀, 𝑡𝑇) > 𝑔(𝑡𝑀𝑡𝑇).  Figure 4B 

shows the ROIs produced by EV and BE as a function of throughput.  The X is the maximum 

ROI produced by TS, and the dotted horizontal line shows throughput levels where TS 

outperforms EV for some combination of (𝑡𝑀, 𝑡𝑇). 

 

 

Section 4.2: Which selection rule is best? 

For every scenario producing an ROI between 10% and 100%, the realistic scenarios, 

Figure 5 presents the ROIs produced by ℎ(𝑡𝑀
∗ , 𝑡𝑇

∗ ), 𝑔(𝑡𝐸𝑉
∗ ) and 𝑏(𝑡𝐵𝐸

∗ ) as a function of 𝜀.  Each 

data point presents the average of at least three simulation runs, with more simulations added 

selectively to maintain a somewhat constant value for the maximum ROI produced when 

selecting projects by their true expected values, 𝜌𝑥.  (Without this smoothing, the curves are 

98% 𝑝𝑀  2% 

98% 

 

 

𝑝𝑇  

 

 

2% 
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wavy because the skewed distributions produce substantial variation in ROI, arising from a few 

highly profitable projects in each simulation.  Creating enough simulations to smooth this 

volatility requires a prohibitive amount of time.) 

Highlighting the most obvious result, if made with the correct 𝑋, 𝑌, and forecasting 

model, to which practitioners are not privy, BE is always best.  The result occurs because BE 

reduces uncertainty.  For example, in the CRE model, when the error in the forecasts, 𝑍, is 𝜀 =

80%, the error in 𝐸[𝑋|𝑍 = 𝑧], which is the estimate BE uses for selection, is 𝜀 ≈ 36%.  Figure 5 

plots the ROI of BE as a function of the error in 𝑧, not the error in 𝐸[𝑋|𝑍 = 𝑧], so we can view 

the ROI of BE as the maximum value one can obtain given the error in 𝑍. 

 Comparing TS and EV, recall that they use the same information, that EV satisfies 

decision theory’s axioms and explicitly maximizes forecasts of expected value, while TS does 

not forecast portfolio value and violates decision theory’s completeness axioms.  For low-cost 

scenarios and small skews (Figure 5, rows 1 and 2), TS outperforms EV at surprisingly low 

values of market uncertainty, in one case when 𝜀 ≥ 36%.  Now compare TS’s performance for 

𝑃5 with 𝑃25.  When 𝑘𝐷 = 𝑃25 the optimal market throughput is 𝑡𝑀
∗ < 100% for most values of 𝜀.  

In these situations, TS is using market information, so its ROI decreases as 𝜀 increases.  

However, as 𝜀 increases, the optimal cutoff value for the market screen, 𝑧𝑐
∗, decreases, which 

means the optimal market throughput, 𝑡𝑀
∗ , increases, making TS depend less on market 

information.  Eventually, as 𝜀 increases, 𝑡𝑀
∗ = 100% and TS becomes impervious to market 

uncertainty because it no longer uses forecasts.  As 𝜀 increases further, TS maintains a constant 

level of performance, especially compared to BE.  In contrast, EV always uses market 

information, so it always suffers when 𝜀 increases. 
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𝛿 𝑘𝐷 
 

1 𝑃5 

   

 

2 

𝑃5 

    

𝑃25 

   

 

4.18 𝑃25 

    

 𝜀 →  20% 40% 60% 80%  20% 40% 60% 80%  20% 40% 60% 80%  20% 40% 60% 80% 

  𝐴𝑈𝐶 = 90% 𝐴𝑈𝐶 = 80% 𝐴𝑈𝐶 = 90% 𝐴𝑈𝐶 = 80% 

  𝜋𝐸 = 53% 𝜋𝐸 = 35% 

 

Figure 5: The ROIs produced by 𝑏(𝑡𝐵𝐸
∗ ), 𝑔(𝑡𝐸𝑉

∗ ), and ℎ(𝑝𝑀
∗ , 𝑝𝑇

∗ ) as a function of market 

uncertainty.  The simulations tested values of 𝜀 ∈ {20%, 36%, 50%, 61%, 70%, 80%}, and 

Excel interpolated the values between them. 
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Both TS and BE succeed by excluding data that, while potentially useful, is sometimes 

harmful.  For BE, as 𝜎𝑌 increases, Bayes’ law relies less on 𝑧 and more on the distribution of 𝑋, 

eventually omitting 𝑧 as 𝜎𝑌 → ∞ (equation 5).  In contrast, EV always uses market information, 

so it always suffers when 𝜀 increases.  The ability to exclude potentially harmful information is a 

quality that TS and BE have in common but that EV lacks. 

 

 

Section 4.3: Do pharmaceutical companies use BE? 

Do companies use BE?  Citing texts on Bayesian statistics (Carlin and Louis 2000; 

Gelman et al. 2013), some literature describes integrating historical information into forecasts via 

hierarchical Bayesian models (Lenk and Rao 1990; Neelagegham and Chintagunta 1999; 

Pammer et al. 2000; Sultan et al. 1990).  This approach uses Bayes’ law when calculating 𝑧 by 

folding class data into a model’s parameters.  In contrast, BE uses Bayes’ law after estimating 𝑧.  

Even if the forecasting process is unbiased, each estimate is either an overestimate or an 

underestimate, and the forecast provides information about the probability and magnitude of 

each possibility (Figure 2). 

 Stonebraker and Keisler (2011) studied the database of a large pharmaceutical company 

to see how the company forecasted the net present value, if launched, of 223 drugs in 

development.  The firm estimated NPV for forecasts for various levels of profit, such as an 

upside outcome, most likely outcome, and downside outcome, and estimated probabilities for 

each scenario, thus forecasting 𝑧 and estimating 𝑓(𝑍|𝑋 = 𝑥).  No subsequent Bayesian 

adjustments were described. 
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Meanwhile, based on Cha et al. (2013), sell side analysts’ forecasting errors of peak sales 

is 𝜀 > 66% (see Appendix).  Errors this large suggest the analysts’ estimates are predominantly 

𝑧 rather than 𝐸[𝑋|𝑍 = 𝑧].  In simulations with high uncertainty, 𝜀 = 80%, and 𝑋 having a 

reasonable skew for pharmaceuticals, BE reduced the standard deviation of forecasting errors by 

67% to produce 𝜀 ≈ 36%.  If the analysts calculated BE, the result was uninspiring. 

Why might practitioners forgo BE?  The reasons parallel the sources of friction that 

Section 1 described: information and bounded rationality at both the individual and 

organizational levels.  Focusing on information, in practice 𝑋, 𝑌 and the error models must be 

ascertained, and estimating 𝑋 is particularly difficult if the payoffs are changing over time.  

Adding these features may introduce bias and additional noise into the model, perhaps worsening 

the model’s calibration.  Bounded rationality from organizational needs and processes may 

preclude BE as well.  Stonebraker and Keisler (2011) report that marketing departments estimate 

𝑧 for numerous scenarios, and portfolio management groups combine the scenarios with 

probabilities.  Having “outsourced” the forecast, the portfolio management team may not know 

that additional adjustments might improve the forecasts.  Finally, individual bounded rationality 

may hinder the estimation of 𝑋.  Åstebro and Koehler (2007) studied expert evaluations of new 

product proposals and found that experts committed the cognitive error of ignoring base rates 

when estimating probabilities of success (Tversky and Kahneman 1982).  Base rates are class 

information, as is 𝑋. 

Considering friction, unless the Bayesian calculation can sufficiently reduce 𝜀, TS is the 

best decision rule.  Possibly, a simpler estimate of BE, made by taking a weighted average of 𝑧 

and an estimate of 𝐸[𝑋], could reduce forecasting errors without introducing too much noisy 
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information or mistaken assumptions.  If successful, this heuristic adjustment could make the 

explicit maximization of expected value into the best decision rule. 

 

Section 5: Three mathematical frameworks for theorizing about friction 

Section 4 presents an example in which realistic amounts of imprecise information turn 

the explicit maximization of expected value into a suboptimal decision rule.  Friction matters.  

While intriguing, more compelling study requires theoretical analysis, perhaps deriving the 

normative implications of friction.  The following three articles provide formal frameworks that 

may support such efforts. 

Heiner (1983, 1986, 1988) incorporates bounded rationality into decision-theoretic 

models by using the conditional probabilities that comprise value of information calculations, 

albeit with two alterations of conventional practice.  First, rather than estimate the value of 

improved information, Heiner calculates the cost of decision errors.  Second, he applies the 

calculations to decision errors arising from bounded rationality.  Heiner shows that boundedly 

rational decision-makers must mitigate the cost of decision errors by using fewer alternatives and 

less information, which simplifies decision frames.  The resulting optimal behavior is coarse, 

meaning it is less variable than the behavior of an unboundedly rational decision-maker. 

Al-Najjar and Pai (2014) address framing in their study of decision errors caused by 

small datasets.  They view decision-makers as frequentists who estimate a model’s parameters by 

using data.  For situations like curve fitting and categorization, they show that the total cost of 

decision errors is the sum of two costs: the costs caused by having an imperfect frame plus the 

cost of overfitting.  Adopting a coarse (simpler) frame increases the cost arising from the 

imperfect frame but reduces the cost caused by overfitting.  As data becomes scant, which 
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exacerbates overfitting, the trade-off becomes beneficial.  The behaviors arising from coarse 

frames are less variable than the behavior recommended by optimizing with a fine frame. 

Inspired by Al-Najjar and Pai (2014), consider classifying decision errors into errors of 

omission (the features missing from an incomplete model) and errors of commission (such as 

modeling errors and sensitivity to imperfect information and imperfect models).  Decision 

analysts may strive to build models that minimize the total cost of decision errors, measured as 

expected utility, calculated as: 

Expected cost of 

decision errors 
= 

Expected cost from 

errors of omission 
+ 

Expected cost from 

errors of commission 

This additive relationship of errors exists with decision trees.  Let the forecast of each terminal 

branch’s payoff be its true value plus an error term, 𝑎𝑖 = 𝑎𝑖
𝑇 + 𝑎𝑖

𝜖, and the estimated probability 

of each terminal branch occurring be its true probability plus an error term, 𝑤𝑖 = 𝑤𝑖
𝑇 + 𝑤𝑖

𝜖, 

producing a forecasted expected utility of 𝑢1 = ∑ 𝑤𝑖𝑎𝑖 = ∑(𝑤𝑖
𝑇 + 𝑤𝑖

𝜖)(𝑎𝑖
𝑇 + 𝑎𝑖

𝜖), as described 

in Ravinder et al. (1988).  Rearranging these terms produces 𝑢1 = ∑ 𝑤𝑖
𝑇𝑎𝑖

𝑇 + ∑ 𝑤𝑖
𝜖𝑎𝑖

𝑇 +

∑ 𝑤𝑖
𝑇𝑎𝑖

𝜖 + ∑ 𝑤𝑖
𝜖𝑎𝑖

𝜖, where the first summation is the true expected utility and the remaining 

summations are estimation errors caused by friction.  To improve decision making, we might add 

features to the model, thereby expanding the decision tree, creating new terminal branches, and 

producing a new estimate of utility, 𝑢2.  In the difference 𝑢2 − 𝑢1, the true expected utility, 

∑ 𝑤𝑖
𝑇𝑎𝑖

𝑇, appears in both terms and drops out of the subtraction.  The remaining terms show how 

the modeling change affected the errors.  Improvements from reducing the errors of omissions 

shrink some error terms, while errors of commission, which occur if the added features 

incorporate additional friction into the model, increase other error terms.  The optimal model 

trades errors of omission for errors of commission, or vice versa, to minimizes the cost, 

measured in expected utility, of decision errors. 
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 In a third framework, Bookstaber and Langsam (1985) describe a single decision from 

three perspectives, with each perspective producing an optimization model.  First, a decision-

maker knows only a proper subset of the variables that define the environment.  Ignorant of some 

variables, the decision-maker creates an incomplete model, thereby hamstringing the decision-

maker with unmodeled uncertainty.  Second, an omniscient observer knows the entire state space 

and thus models all uncertainty with probabilities.  Third, the optimal decision rule, created by 

the omniscient observer, tailored to the decision-maker’s ignorance but without providing the 

decision-maker with new information, produces optimal decisions while laboring under the 

decision-maker’s ignorance.  Comparing the three optimizations yields insights, including the 

following.  The optimal behavior for the decision-maker (optimization 3) is less variable than the 

behavior produced by optimizing while assuming the decision maker’s incomplete model is 

complete (optimization 1). 

The introduction of the omniscient observer’s perspective is provocative.  By optimizing 

as if the incomplete model were complete, the decision-maker believes that the resulting actions 

are optimal.  However, from the omniscient observer’s perspective, those decisions may be 

suboptimal because, even if the decision-maker adheres to decision theory’s axioms, the 

decision-maker may have an erroneous preference ordering.  Meanwhile, the decision rule in the 

third optimization, the decision-maker’s optimal rule, may look suboptimal to the decision-

maker, possibly even violating decision theory’s axioms.  To the omniscient observer, the rule is 

optimal and consistent with decision theory’s axioms. 
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Conclusion 

Friction can make models ill-calibrated so that the models incorrectly forecast expected 

utility.  If practices like debiasing and decision quality sufficiently mitigate friction, decision 

making should follow decision theory’s traditional prescriptions: adhere to its axioms and select 

the alternative that maximizes a model’s forecast of expected utility.  However, what happens if 

friction is unavoidably impactful, creating significant errors in a model’s estimates?  Can 

maximizing expected utility be a suboptimal decision rule?  Is satisfying decision theory’s 

axioms necessary or sufficient for good decisions?  Can rules that violate the axioms outperform 

rules that satisfy them?  This paper’s example suggests answers of yes, no, and yes are possible 

and thus worthy of further study.  Such studies might explain why PDA practices differ from 

theory, or, by developing new methods, methods that manage friction well, cause theory and 

practice to converge, making them look more like twins, or at least like siblings, instead of 

resembling distant cousins. 
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Appendix: Estimating the model’s parameters with empirical data 

A1: Estimating the skew of the payoffs, 𝜹 

To test BE, EV and TS, we need realistic ranges of 𝛿, 𝜀, 𝜋𝐸, 𝐴𝑈𝐶, and 𝑘𝐷, spanning from 

low to high values, gleaned where possible from empirical data.  Data from the pharmaceutical 

industry provides some guidance, especially for the critical selection of compounds for phase 3 

trials.  The set of choices is the compounds that have completed phase 2 trials, which are small 

trials that provide initial evidence of efficacy and safety.  Compounds that advance to phase 3 

receive large clinical trials that produce the evidence of safety and efficacy the FDA requires for 

approval. 

Grabowski et al. (2002) report that the top three deciles of pharmaceuticals launched 

from 1990-1994 produced approximately 50%, 20%, and 10% of the industry’s profits, 

implying a lognormal distribution with 𝛿 = 15.6, an absurdly large skew.  Using a different 

approach, we could estimate 𝛿 via a key relationship: for any development cost, ROI increases 

with the skew of 𝑋.   Steedman et al. (2018) estimate the aggregate ROI of late-stage 

development (phase 3) for twelve large-cap pharmaceutical firms, from 2010-2018, fell from 

10.1% to 1.9%, suffering from increased costs and decreasing revenue per drug.  DiMasi et al. 

(2003) provide cost data that compliments the revenue data from Grabowski et al. (2002), and 

several recent studies exist as well.  Using this data, the simulations of Section 4 can find the 

skew that produces the industry’s ROI, given the industry’s cost.  Unfortunately, simulations 

suggest skews that are too small to realistically represent pharmaceuticals, which illustrates 

friction: the presence of scant, incompatible data.  To test a variety of skews, the simulations of 

Section 4 use a range spanning from low to high, 𝛿 ∈ {1, 2, 4.18}, produced by lognormal 

distributions with 𝑉~𝑁(−0.049, 0.3142), 𝑉~𝑁(−0.152, 0.5512), and 𝑉~𝑁(−0.361, 0.852).  
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According to Figure 5, a skew of 𝛿 = 2, with 𝑘𝐷 = 𝑃25, comes closest to the ROIs reported by 

Steedman et al. 

These values help to check the simulation results for robustness by comparing the result 

of using lognormal distributions for 𝑋, with 𝛿 ∈ {1, 2, 4.18}, to simulations that use exponential 

distributions.  All exponential distributions have 𝛿 = 2 and contain 33%, 19%, and 14% of their 

value in the top three deciles of the distribution, as do lognormal distributions with 𝛿 = 4.18.  

 

 

A2: Estimating the error in forecasts, 𝜺 

 Fortunately, empirical data is more helpful for estimating 𝜎𝑌, which through equation (1) 

estimates 𝜀.  Cha et al. (2013) evaluated sell-side analysts’ forecasts of peak sales, which is the 

maximum annual sales in a product’s life-cycle, a key component in profit estimates.  They 

calculated the relative error in forecasts of peak sales, (forecast − actual) actual⁄ , for each drug 

and then calculated the standard deviation of the results, creating a statistic analogous to 𝜎𝑌 in 

the CRE model.  Studying 260 drugs launched between 2002 to 2011, but excluding 54 of them 

as outliers, rejecting them for having forecasting errors exceeding 160%, Cha et al. calculated the 

standard deviation of the relative errors to be 75%.  How can the error be so large, especially if 

underestimates are at most 100% too low?  Overestimates may greatly exceed the true value, and 

because of the optimizer’s curse, as Figure 2 shows, we expect these large overestimates.  

Including the “outliers” raises the estimated error to a minimum of 𝜀 ≥ 93% = 79% ∗ 75% +

21% ∗ 160%. 

 Three adjustments complete this calculation.  The data from Cha et al. suffer from 

survivorship bias.  They studied launched drugs, which usually have above-average profit 
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forecasts, with some of the forecasts being optimistic, thus inflating error estimates, which is 

another manifestation of the optimizer’s curse.  Hay et al. (2014) report that only 16.2% of phase 

2 compounds achieve launch.  For this throughput, Section 4’s simulations estimate that 

survivorship bias inflates forecasting errors by 9%, so we should reduce the minimum error from 

93% to 86%.  Second, Cha et al. calculated the error in forecasts made two years before launch, 

a time when phase 3 trials are nearly complete.  The advancement of compounds from phase 2 to 

phase 3 occurs, on average, four years before launch (Paul et al. 2010), and obviously, phase 3 

data is unavailable for these decisions.  For forecasting over a longer horizon and using less data, 

we should increase the error estimate.  Third, peak sales is a critical component of profit 

forecasts, but other estimates contribute as well.  Each estimate adds error to the forecast, 

suggesting a second upward revision.  Considering the two upward revisions, 100% ≤ 𝜎𝑌 ≤

125% seems reasonable. 

Using equation (1), Table 4 presents the forecast uncertainty for various skews of 𝑋.  A 

skew of 𝛿 = 2, coupled with high development costs, produces the ROIs close to those measured 

by Steedman (2018).  However, the forecasting error for this skew, 𝜀 > 79%, is quite high.  A 

lower value from the table, 𝜀 > 66%, maybe more realistic.  Notice that 𝜀 decreases as 𝛿 

increases (see Table A1) and recall the discussion of 𝛿 and ROI from above (Section A1).  A 

skew of 𝛿 = 4.18 is probably too high because, as Figure 5 reveals, it produces ROIs higher than 

those reported by Steedman et al. (2018).  Thus, we can consider 𝜀 > 66% to be a lower bound 

on the forecasting error.  Notice how little of the forecast is signal: 1 − 𝜀 < 34%.  To test a 

variety of forecasting errors, spanning realistic values, from exceptional to terrible forecasts, the 

simulations test 𝜀 ∈ {20%, 36%, 50%, 61%, 70%, 80%}. 
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Skew of lognormal 𝑋 𝜀 when 𝜎𝑌 = 100% 𝜀 when 𝜎𝑌 = 125% 

 1.00 91% 94% 

 2.00 79% 86% 

 2.00  (exponential 𝑋) 67% 76% 

 4.18 66% 75% 

Table A1: The forecasting uncertainty produced by 100% ≤ 𝜎𝑌 ≤ 125% for various 

distributions of 𝑋, calculated with equation (1). 

 

A3: Estimating technical uncertainty, 𝑨𝑼𝑪 

Like the market parameters, empirical evidence guides the choice of technical 

parameters, 𝜋𝐸 and 𝐴𝑈𝐶.   Focusing on efficacy, statisticians sometimes size phase 2 trials to 

produce false-positive and false-negative rates of 5% and 20% (Chen et al. 2015; Lindborg et al. 

2014), which from equation (4), produces a phase 2 resolution of 𝐴𝑈𝐶2 = 0.961.  The sizing of a 

clinical trial rests on uncertain assumptions, and if uncertainty is more harmful than helpful, on 

average, 𝐴𝑈𝐶2 = 0.961 is an upper bound on phase 2’s resolution.  Uncertainty about safety 

reduces the resolution a well. 

Lo et al. (2019) provide a lower bound.  Using data from 4,812 phase 2 drugs, they 

developed classifiers to predict FDA approval.  Drugs from the most recent period they studied, 

2010-2014, produces the best classifiers, achieving 𝐴𝑈𝐶2 = 0.797, with a 90% confidence 

interval of [0.718, 0.876].  For two reasons, phase 2 trials should produce resolution greater than 

these classifiers yield.  First, while both phase 2 trials and Lo et al. predict success using 

characteristics of clinical trials, including results, clinical trials predict efficacy while Lo et al. 

predict FDA approval.  Compounds canceled for nontechnical reasons, such as poor profitability 

or changes in corporate strategy, dull the resolution of Lo et al.’s classifiers.  Second, while all 

approved drugs are effective, drugs that fail in development include both ineffective compounds 

(true-negatives) and effective ones (false-negatives).  The placement of effective drugs among 
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both successes and failures dulls the differences between successful and failed compounds and 

reduces the classifiers’ resolutions.  In total, a reasonable range for technical resolution is 

0.797 ≤ 𝐴𝑈𝐶2 ≤ 0.961  To test regimes of high and low resolutions, Section 4 uses 𝐴𝑈𝐶2 ∈

{80%, 90%}. 

 

A4: Estimating the percentage of projects that are technically sound, 𝝅𝑬 

Estimating the fraction of phase 2 compounds that are effective, 𝜋𝐸, requires careful 

disentangling of intertwined concepts and equations. We start by estimating the fraction of phase 

3 compounds that are effective and then use the results to analyze phase 2.  Beginning with 

historical data from Hay et al. (2014), industry-wide, phase 3’s attrition is 39.9%, of which 54% 

fail for efficacy issues, so 21.5% = 39.9% ∗ 54% of phase 3 compounds fail for demonstrating 

insufficient efficacy.  If managers considered efficacy only, ignoring safety and business issues, 

78.5% of phase 3 compounds would advance to a new drug application (NDA) with the FDA.  

About 16.8% of NDA applications fail, of which 48% percent fail for insufficiently 

demonstrating efficacy, so 92% = 1 − 16.8% ∗ 48% of NDA compounds are effective. 

Plugging these values into equations (6) and (7), with 𝑡𝑇 = 78.5% and 𝜋𝐷 = 92%, 

produces two equations with three unknowns: 1 − Φ𝑆(𝑣𝑐), 1 − Φ𝐹(𝑣𝑐), and 𝜋3.  From Section 

2.2, we can rewrite 1 − Φ𝑆(𝑣𝑐), and 1 − Φ𝐹(𝑣𝑐) in equations (6) and (7) in terms of 𝛽 and 𝛼 2⁄  

and then use the relationship of 𝛽 and 𝛼 2⁄  to 𝐴𝑈𝐶 from equation (4).  The resulting equations 

(4, 6, and 7) provide what we need.  For any value of 𝜋𝐸, only one value of 𝐴𝑈𝐶 produces 𝛽 and 

𝛼 2⁄  that satisfy equations (6) and (7).  If we can get upper and lower bounds on 𝐴𝑈𝐶 for phase 

3, we can calculate the upper and lower bounds on 𝜋3. 
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We find bounds on phase 3’s 𝐴𝑈𝐶3 using the same approach for finding 𝐴𝑈𝐶2 (above).  

For the upper bound, statisticians typically size phase 3 trials to achieve a false-positive rate of 

2.5% (one-tailed) with a false-negative rate of 20% (Senn 2007), which produces 𝐴𝑈𝐶3 = 0.976 

(equation 4).  For the lower bound, Lo et al. (2019) produced classifiers for predicting approval 

with phase 3 results.  The best classifiers they produced achieved 𝐴𝑈𝐶3 = 0.876, with a 90% 

confidence interval of [0.724, 1.000].  Assuming 0.876 ≤ 𝐴𝑈𝐶3 ≤ 0.976, and using the 

historical estimates of 𝑡𝑇 = 78.5% and 𝜋𝐷 = 92%, equations 4, 6 and 7 imply that the fraction 

of phase 3 compounds that are effective is 74% ≤ 𝜋3 ≤ 81%. 

 Now we repeat the calculations by applying equations 4, 6, and 7 to phase 2.  In these 

equations, phase 2’s throughput is 𝑡𝑇.  The fraction of phase 2 compounds that are effective, the 

variable we need to estimate, is 𝜋2 (replaces 𝜋𝐸 in equations 6 and 7).  The output of phase 2’s 

selection, the fraction of phase 3 compounds that are effective, 𝜋3, we just estimated (replaces 

𝜋𝐷 in equation 7).  From historical data, 67.6% of phase 2 compounds fail (Hay et al. 2014), and 

51% of these failures are for lacking efficacy (Arrowsmith 2011), so 34.5% of phase 2 

compounds fail for being ineffective.  Phase 2’s (efficacy-only) throughput is 𝑡𝑇 = 65.5%.  

Using 74% ≤ 𝜋3 ≤ 81% and  0.797 ≤ 𝐴𝑈𝐶3 ≤ 0.961 (estimated above), implies 49% ≤ 𝜋2 ≤

66%.  Some therapeutic areas, like oncology, have high failure rates, so to include regimes of 

fruitful and less fruitful choice sets, Section 4’s simulations use 𝜋𝐸 ∈ {35%, 53%}. 

 

A5: Estimating development costs, 𝒌𝑫 

Development cost is the final parameter to estimate.  Recall that for convenience 𝐸[𝑋] =

1 in all the simulations.  With this mean, consider the impact of skew.  Large skews spread 𝑋 

outward in both directions, while small skews make more compact curves.  The latter case 
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produces some nonsensical results.  With 𝛿 = 1, a cost of 0.5, an absurdly high cost, sits below 

98% of 𝑋, so only 2% of projects are unprofitable.  To prevent these problems and represent 

costs consistently, we set 𝑘𝐷 as a percentile of 𝑋.  For concise notation, let 𝑃𝑎 be the value of 𝑋 

at the 𝑎th percentile, 𝑘𝐷 = 𝑃𝑎 = 𝐹𝑋
−1(𝑎). 

Empirical data plus assumptions about 𝛿 estimate 𝑘𝐷.  Grabowski et al. (2002) report that 

34% of pharmaceuticals that achieve launch have profits exceeding the expected capitalized out-

of-pocket costs (COC) of discovery and development.  For a lognormal 𝑋 with 𝐸[𝑋] = 1 and 

𝛿 = 4.18, the 66th percentile occurs at a cost of 0.99.  (For convenience, assume random 

selection from 𝑋, rather than selection based on evaluations.)  Grabowski et al. included post-

launch expenditures in their calculations.  Removing these expenses reduces the cost to 0.88.  

Meanwhile, DiMasi et al. (2003) report that phase 3 consumes 40% of the COC of creating a 

drug, while Paul et al. (2010) report that the FDA application consumes about 5% and that the 

success rates for phase 3 and the NDA are 70% and 91%, respectively.  When selecting phase 2 

compounds to advance to phase 3 trials (to advance to development in this paper’s model), 𝜋𝐷 =

70% ∗ 91% = 63.7% and 𝑘𝐷 = (40% + 5% ∗ 70%) ∗ 0.88 = 0.38.  As a percentile of 𝑋, the 

expected cost of a compound that advances to phase 3 is 𝑘𝐷 = 𝑃24.5.  (Note: successful drugs 

must pay for the 1 − 𝜋𝐷 projects that fail in phase 3, so a compound is profitable if 𝑥 >

𝑘𝐷 𝜋𝐷⁄ = 0.61, which occurs at 𝑃43.6.  Figure 3 uses this number.)  Repeating these calculations 

for a lognormal 𝑋 with a 𝛿 = 2 produces a lower cost of 𝑘𝐷 = 𝑃10.  To test both low and high 

costs, the simulations used 𝑘𝐷 ∈ {𝑃5, 𝑃25}.   
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A6: Calculating 𝑬[𝑿|𝒁 = 𝒛] for the CRE model 

For the CRE model, we calculate 𝐸[𝑋|𝑍 = 𝑧] by deriving a formula for 𝑓𝑋|𝑍=𝑧(𝑥) and 

then integrating ∫ 𝑥𝑓𝑋|𝑍=𝑧(𝑥) 𝑑𝑥 numerically.  The formula for a conditional probability density 

for a continuous function is 𝑓𝑋|𝑍=𝑧(𝑥) = 𝑓𝑋,𝑍(𝑥, 𝑧) 𝑓𝑍(𝑧)⁄ .  Starting with the denominator, 𝑓𝑍(𝑧), 

the forecast in the CRE model is the product of two independent random variables, 𝑍 = 𝑋 +

𝑋𝑌 = 𝑋(1 + 𝑌).  Springer (1979) derives the density function for the product of two 

independent random variables.  We use the substitution 𝑌 = (𝑍 𝑋⁄ ) − 1 in his formula to get 

𝑓𝑍(𝑧) = ∫(1 𝑥⁄ )𝑓𝑋(𝑥)𝑓𝑌((𝑧 𝑥⁄ ) − 1) 𝑑𝑥, integrated over 0 < 𝑥 ≤ ∞. 

To get the formula for 𝑓𝑋,𝑍(𝑥, 𝑧), note that the likelihood of a realization of 𝑋 = 𝑥 and 

𝑍 = 𝑧 is the likelihood of two events in a product distribution, 𝑋 = 𝑥 and 𝑌 = (𝑧 𝑥⁄ ) − 1, which 

is given by the integrand of 𝑓𝑍(𝑧).  Thus, 𝑓𝑋,𝑍(𝑥, 𝑧) = 𝑓𝑋(𝑥)𝑓𝑌((𝑧 𝑥⁄ ) − 1) 𝑥⁄ , for 𝑥 > 0.  

Altogether, we have 𝑓𝑋|𝑍=𝑧(𝑥) = 𝑓𝑋(𝑥)𝑓𝑌((𝑧 𝑥⁄ ) − 1) [𝑥𝑓𝑍(𝑧)]⁄ . 
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